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We consider a system of N horizontal lines where colliding vertical sticks are 
placed initially according to an equilibrium prescription; they move parallel to 
the lines and collide; the collisions take place between sticks of the same line 
and of the adjacent ones. The asymptotic behavior of a tagged stick is diffusive, 
and the self-diffusion constant is inversely proportional to N. 
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1. I N T R O D U C T I O N  

The asymptotic motion of a test particle in a classical fluid is an interesting 
problem in nonequilibrium statistical mechanics. It is related to transport 
properties of matter, and the analysis of Brownian movement by Einstein 4 
was perhaps the first deep insight into this subject. Rigorous analysis in this 
field has come relatively recently; the papers by Harris ~2) and Spitzer ~3) 
opened a new line of research, showing the asymptotically diffusive behavior 
of a test particle in a one-dimensional "sea" of identical particles at 
equilibrium. 

It is to be noted that in this setting subtle phenomena may happen: 
by changing the initial state, Szfisz and Major ~4) proved convergence to 
a Gaussian non-Wiener process, in spite of the convergence of the state 
to equilibrium. The situation for the multidimensional case is more 
complicated even at equilibrium: computer simulations give superdiffusive 
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Fig. l. A portion of a "generic" configuration of the system. 

behavior for the two-dimensional hard-disk system, and diffusive behavior 
for the three-dimensional hard-sphere system. Here we consider the following 
model: on the plane R2 a fixed array of N parallel lines with constant unit 
spacing between them is given; the particle system consists of infinite 
identical sticks, orthogonal to these lines, on which their centers are free to 
move. 

Their lengths are such that collisions between sticks are possible if they 
belong to the same or to adjacent lines. When two sticks collide, they 
exchange their velocities; otherwise they move freely (see Fig. 1). As usual, 
simultaneous collisions of more than two sticks will be ruled out by a 
suitable choice of the class of initial states. The following analysis shows a 
diffusive behavior for a test particle, with diffusion constant decreasing with 
N as 1/N. The main point to be noted is the dependence of this quantity 
on the number N: in spite of the locality of the interaction, the test particle 
feels asymptotically a global (size) property of the system. A heuristic 
argument for this behavior is the following: the coupling between the lines 
is such that during its motion the test particle "drags" a whole set of - N  
sticks, placed on the other lines. In the next section we give more details 
on the model and state the results on the dynamics of the system and of 
the test particle; proofs and some auxiliary results are given in the third 
section. 

2. ANALYSIS  OF THE M O D E L  A N D  S T A T E M E N T  OF 
THE RESULTS 

The initial states which we consider are as follows: positions on the 
lines are given according to independent Poisson point processes, with the 
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same intensity (density) p (hereafter called p-Ppp); velocities are i.i.d. 
random variables for any stick with distribution function dF(v) such that 

Pr{v=0}-dF({0})=0; ~lvl ~f Ivl dE(v)< c~; Ev=_fvdF(v)=O 

A useful way to describe this model in a one-dimensional setting is the 
following: give on the line Nl positions {xi}i~z, where the label i refers to 
the ordering 

. . .X_l<0~<x0<xl  < x 2 < . . .  (2.1) 

according to an Np-Ppp. Then give velocities to each point as i.i.d. 
random variables with the common distribution F(c0-Pr(v~<c~); call 
co = {(xi, v i ) } ~  the resulting phase configuration. Finally, give i.i.d, dis- 
crete "marks" aie {1, 2 ..... N}, with uniform distribution: Pr(a~= 2)=  1/N, 
iEZ, 2e{1,2,. . . ,N}. Call (5={(x/ ,v~,a i ) ) i~  the "marked" phase 
configuration point. The set of all co (respectively c5) will be called (2 
(respectively sO). The phase configurations of our system correspond to the 
elements of sO where the mark ai indicates the line, neglecting the zero- 
probability set, where coincidence of abscissas is present. Similarly to the 
hard-point system, where the collisional dynamics can be seen as "free 
motion plus exchange of labels at crossings," we can describe the evolution 
of the stick system in this way: consider the free evolution of points on ~1, 

x~(t)=xk+vkt, vk(t)=vk, k e Z  (2.2) 

Any point carries its label and mark until its trajectory crosses another 
one; then if the difference of marks is bigger than one, they go on freely 
without changes, otherwise they change marks and labels (see Fig. 2). That 
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Fig. 2. Some diagrams x=x(t) belonging to marked particles (3 and 2 collide, 3 and l ~eely 
cross). 
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is, if t->0 is the first crossing time for particles labeled by k, j, k C j, i.e., 
xk(t) = xj(t-) and no previous coincidences with other particles are verified 
for those particles between 0 and [, then ak(t)= oh, o-y(t)=aj for t e  [0, t-); 
if [O'k--O'j[ > 1, ak({+)=ak,  aj({+)=a;;  if [ak--ajl ~<1, the particle with 
position and velocity (Xk([+), Vk({+)) has mark aj and vice versa. The 
similarity with the simpler hard-point system is now clear; in fact, for 
describing the collisional paths of the hard points it is sufficient to 
exchange labels in correspondence of crossings between free trajectories; it 
turns out that properties which do not depend on labels are studied by 
looking at the free system. 

The same information now will be extracted from our system: we 
consider the free motion of particles plus exchange of marks according to 
the former rule, and we shall state a lemma on the invariance of the 
Poisson structure. 

I . emma  1. States which are product of N independent p-Ppp are 
invariant under the time evolution. 

While the proof is postponed to the next section, it will be useful to 
write down some formulas explaining the meaning of this statement. 
Namely, let us define: Via, b] c ~1, # ~a, bl(t ) =number  of particles with 
mark 2, 2~ {1, 2 ..... N}, in [a, b], at time t>~0; ~[to~b](t)=Y', N - ~ = 1  # ~ ~  

The following relation, valid by hypothesis at t = 0, holds for any positive 
time: 

Pr{ # ~a'bl(t) = kl ,  # ~'bl(t) = k2 ..... # EN~'a](t) = kN} 

u [p(b_a)]k, 
= 1-I exp ( -p (b  - a)) 

i=1 k~! 
(2.3) 

This lemma implies this relevant property: the distances between sticks 
of the same line are independent exponentially distributed random 
variables, with expectation p 1. We take as tagged particle the one in the 
first line, with the least nonnegative abscissa: u ~ io-min{k:  xk ~>0, 
ak = 1 }; it will be the initial label of the test particle. The actual path of this 
particle will be called Y(t) = y(t, (5): it depends (deterministically) on time 
and on the initial full configuration (5, but as the ordering is not globally 
preserved, it will be somewhat more difficult to analyze it in terms of the 
associated free system. Nevertheless, considering y(- ) = y( -, c5) e C([0, T]) 
(space of continuous real functions defined on [0, T])  as a stochastic 
process on ~, equipped with the full (i.e., with velocity distribution, too) 
product of the Ppps as probability measure, we formulate here the main 
result. 
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T h e o r e m .  The asymptotic scaled motion of a test particle in the 
stick system is diffusive, with diffusion c o n s t a n t  DN=IF-IIJI/(Np); more 
precisely, X/q~(.), continuous functional on C([0, T]),  

lira F_~(A ~/2y(A.))= F_ch(B(., BN)) 
A ~ o o  

(2.4) 

where B(-, DN) is the Brownian motion starting from zero with diffusion 
constant D u. 

3. ' P R O O F S  

Before going on to the proof of the lemma, we need to state some 
auxiliary propositions, related to the free dynamics of unmarked points, 
and then to the "free plus change of marks" dynamics. In the first 
proposition we consider a point system evolving freely on the line; its phase 
configurations can be considered realizations of a nonhomogeneous Ppp in 
the phase space N2 with intensity measure meas(dv d x ) = d F ( v ) p  dx. The 
free time evolution is very simple [see (2.2)]: 

co(t)= {(xi+ ~i~, v,)}i~z, t>0  (3.1) 

and leaves invariant, by inspection, the initial state. We want now to show 
a cluster property for this system. 

Definition. For T > 0 ,  z e ~  is T-separating for co if Vx~co, 
Vxj6co,  x i < z < x j ,  ~ x i + v i t < z < x j + v j t ,  V t e  E0, T]. 

Proposition 3.1. For  all [ a , b ] c B 2 ,  for all T > 0  there exists 
s e 7/, s+ e 7/ which are T-separating for almost all co Eft ,  and such that 
E s _ , s + ] = [ a , b ] .  

Proof.  First of all, for any z e ~ we can easily calculate the probability 
that it is T-separating. Let us define the following sets: 

Rz, T -  {(x, v): z - v T < x  <z,  v>0} 

u { (x, v): z < x < z - vT, v < 0 } c N2 (3.2) 

Rz, r = {CO: Z is T-separating for co } c f2 (3.3) 

then Rz . r=  {co: number of points in Rz, r -  = # R~.7(co)=0}. 
So 

Pr { z is T-separating } = Pr { # R~., = 0 } = exp [ - meas(Rz, r) ] 

= e x p ( -  Tp E Ivl) (3.4) 
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Now we show that there are infinitely many T-separating integers. 
Let S be the unit space translation acting on f2: 

S{(x,, = { ( x , +  1, (3.5) 

The Ppp on N2 is clearly mixing wrt S: V/i,/~, measurable ~/2, 

pr{S~dc~/9} ~_~  , Pr{A} Pr{/}} 

This implies an ergodic property (6~ for the indicatrix function of the set 

/~Eb3 + t,T: 

i n  1 

a.a. co�9 - ~ |k[bl+a,T(S ko0) n ~ o o  ' Pr{R~b?+l ,r}=exp(-TP~-Iv l )  
n k = 0  

[by (3.4)], but for the lhs we have 

n - - I  n 1 

1 ~ l~[b]+lT(X__k(~o) 1 2 lt~[b]+k*l,T(O~) 
/// k = 0  n k = 0  

n - - I  The divergence of the sum Y'-k=o l/~[b]+k+bT(69) for a.a. co says that for 
infinitely many k �9 N +, ~o �9 Eb3 + k + 1, r, 

The same argument works in the half-line ( -  o% a). | 

To prove Lemma 3.1, we shall use the following result about the 
invariance of the mark distribution during the evolution of a finite set of 
particles (the rather easy proof is omitted). 

Let co M= {(ui, e)i)}~l,...,M be a phase configuration of M particles 
such that u~ < u2 < --- < uM and no multiple or simultaneous crossings are 
allowed in [0, T]. 

Then give marks to each particle, independently and uniformly: let 
a M - ( ~ 1 ,  rr2,..., aM)�9  {1, 2,..., N} ~t, V_2M�9 {1, 2,..., N} M, and P r { g M = 2 =  
)_~MI~OM}=(t/N)M. The marks will change during the evolution as 
explained in Section 2. The invariance of the distribution means that the 
following holds: 

pr{_~(t)=_2Ml~oM}= ~ , t e [ 0 ,  T] (3.6) 

Proof of Lemma 1. As the unmarked free systems preserves the 
Np-Ppp state, it will be sufficient to show that the distribution of marks for 
the particles which at time tE [0, T) are in a fixed interval I-= [a, b] is the 
uniform-independent distribution given at time O. 
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In fact, in this case, for s ~< N, (i 1 ..... i~) e { 1 ..... N}' ,  k~ e ~ +, 

/ / \  kl+ ' +~ L[ 
Pr{ # ~l(t) = kl,..., # ~(t)= ks[ # t~ot(t) = L} = ~N) k,! . . . k , i  

so that 

Pr{ # ~(t)= k~,..., # ~v(t) = ks} 

[Np(b-a)]L (~) k~+ 
= e x p [ - N p ( b - a ) ]  L! 

N 

= [-I e x p [ - p ( b - a ) ]  [ P ( b - a ) ] ~ '  
i=1 ki! 

+eN L! 

kl !  . . .kN!  

as L = k l  + ...  + k  N. 
Let xil(t),..., x~l(t ) be the positions of l particles (l~> 1) in I at time t. 

Their marks o-~l(t),..., ai1(t) depend on the various crossings between their 
own trajectories and those of other particles coming from "everywhere" 
(i.e., even from outside I). So we are led to consider the finite set of 
particles staying in the least interval with T-separating extrema which 
contains I -  [a, b]. 

For a given initial configuration co and T > 0, let 

s - sup{s: s ~< a; s is T-separating} = s (co, I, T) 

s + - inf{s: s ~> b; s is T-separating } = s + (co, I, T) 

In fact, [s , s + ] ~ I a n d  

( s + - s _ ) < o o ,  M(co)-- #~o~?"+l(t)= #~[;?"+]<oo (a.s.) 

For the a.s. finite set of particles in [s , s+ ], we apply the preceding 
proposition: for any subset of such set (the ones belonging to I at time t) 
the distribution of marks is invariantly independent-uniform and (2.3) 
holds. | 

Remark.  The invariance of the p-Ppp state for a fixed mark (i.e., 
fixed line for the stick system) implies, as in the hard-point model, that 
during the actual evolution ther distances between successive sticks are 
stationary random variables (exponentially distributed with expectation 
p- l ) .  

We need now to give a further definition which will be useful in the 
sequel. 
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Definition. VkE77, we define the block in ( k , k + l ) ,  with center 
xik ~ (k, k + 1 ), the following set/~k c f~: 

(k,k + 1 )= 2 N- -  1; & -  #to, 

k.(Xik_N+l< . . .  < X i k <  . . .  < X i k q _  N l < k + l ;  

aik+j(&) = j +  1, j = 0 ,  1 ..... N -  1} (3.7) 

Looking to the stick model, Bk is given by all phase configurations such 
that one stick in the first line is between two subsequent sticks of the 
second line; and these are subsequently nested in the same way up to the 
Nth line: all their abscissas are inside (k, k +  1) (see Fig. 3). 

The following proposition says that in a typical configuration there are 
infinitely many such structures. 

Proposition 3.3. Denoting by Pr the probability measure on s 
induced by the product Ppp, the following holds: 

Pr{/~k i.o. } = 1 (3.8) 

Proof. First of all let us compute for a given k E 77, the probability of 
occurrence of/~g. 

The Poisson structure of the state allows an explicit evaluation: 

Pr{/~k} = e x p ( - N p )  (Np)2N-I 

= exp(- -Np)  (2N- 1)! 

N-1 [ 

( 2 N -  1)! 

--pN>O 

I 
I 

Fig. 3. 
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A configuration belonging to the block /~k (only sticks with abscissas in Ek, k + 1 J 
are depicted). 
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Moreover, for k r k', /}k and /~k' are independent; then, via the Borel- 
Cantelli lemma for independent events, (3.8) holds. | 

Remarks. (i) Let us define k+((5), the index of the first positive 
block : 

k + = k + ((5) = inf{k �9 2~ + [(5 �9 (3.9) 

From independence we have 

Consequently, 

Pr{k + = j }  = (1 - pu) j - 'pN,  j = l ,  2 .... 

E(k +) = 1/p~ (3.10) 

(ii) Analogous definition [as in (3.9)] and result hold for the first 
negative block, with index k = sup{k �9 Z - :  (5 �9 and center initially in 
xi~ �9 These two blocks (resp. centers) will be called the first ones. 

(iii) We observe that these structures will be not completely 
preserved during the collisional evolution, but the ordering among the 
2 N -  1 particles which initially define the blocks is preserved. 

The next proposition is related to the behavior of the centers under the 
real (collisional) dynamics; V j � 9  Z, the continuous function t ~ yj(t), with 
s  ), s represents the actual path of the particle 
initially labeled by j. 

Proposition 3.4. The joint scaled motions of the first centers 
converge (weakly as processes in C[0, T]) to the same Brownian motion 
with diffusion constant DN= E ]vj/Np. 

ProoL Let us consider the one-dimensional hard-point system 
associated to ours; if o5 = {(Xk, VK, ak)}k~Z is the initial (marked) phase 
configuration, its evolution is defined to be purely collisional, inde- 
pendently of the marks; i.e., the associated system is the hard-point system 
starting from co. 

For any k � 9  let Yk(t)= Y k ( t l ~ ) =  Yk(tJco) be the hard-point 
collision path starting in x~(~), with velocity v~(~); Yo(t) has a known 
asymptotic behavior/3'5): A-I/Eyo(A.) converges (weakly, as a process in 
C[-0, T]), to B(., DN); the key observation is the following: for almost all 
initial eS, 

yi~( t )  = Yi~. (t), t>~O 

In fact the path of a center of any block is never crossed by any other 
path, and it can be traced in the set of free trajectories exactly as in the 
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hard-point model: by construction any stick on its left (right) will remain 
forever on its left (right). Now we can adapt the argument used by Sz~sz(7): 
in that case the author considered two points starting from deterministic, 
A-dependent positions; the limit processes, if the initial spacing is 
infinitesimal w.r.t, the divergent parameter A, coincide with probability 
one. Moreover, the choice of the initial state gives that this limit process is 
B(., DN). 

In fact, let zA(- )  be scaled paths in the hard-point system starting 
from initial positions diverging to +_ ~ as A ~, ~ e (0, 1 ); we have 

z ~  (t) <<. YJ(t) ~< z~+ (t) (3.11) 

and we know from ref. 7 that Z A (.), Y~(.), and zA+ (.) are converging to 
the same process (B(., DN)). The random initial positions of the two first 
centers are finite a.s.: under scaling they go to zero with probability one 
because [see (3.10)]: 

~lx,,_+l ~< ~(Ik~l + 1)~< 1 + 1 | 
PN 

Proof  o f  the Theorem. We shall compare the path of the tagged 
stick with the paths of the nearest centers. Let the initial position of the 
tagged stick be xi0; we shall introduce a shorter notation for our scaled 
processes: 

A l/2yi~+(At)=--yA+(t); A 1/2y(At)=--yA(t) 

Then for the path y(t) = yio(t), which describes the motion of the 
tagged stick in the actual stick dynamics, the following is true: 

Yi~ (t) = Ytk (t) <~ y(t) <<. yi~+(t) = Yi~+(t) (3.12) 

This double inequality goes on the scaled processes: 

y~(t )<~yA(t) .< A ..~y+(t) (3.13) 

As the side processes in (3.13) converge to the same process (Proposi- 
tion 3.4), the same is true for yA(t); this is due to the fact that a.s.: 

sup (yA(t ) - -  yA_(t))<, sup (yA+(t)-- y~ ( t ) )  | 
t e  [0, T]  t e  [0, T]  

4. CONCLUSIONS 

The result is mainly based on the following point: on the first (any) 
line there are sticks which move as though they were hard points in a gas 
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of density Np. This fact is essentially due to the presence of ordered 
structures (blocks) which act like heavy walls during the motion of the 
sticks and are randomly but a.s. finitely spaced. Then the structure of 
he process forces any other stick in that line to move asymptotically in the 
same way. 

The infinite ( N =  ~ )  case needs different techniques: the associated 
one-dimensional system obtained by projection is ill-defined; on the other 
hand, the particle cannot move more freely than in a finite array of N lines 
(VN): so one is led to conjecture a subdiffusive behavior and to look for a 
suitable space-time scaling leading to a nontrivial limit. 

Finally, we wish to list some related models, somewhat nearer to 
physics, where other ideas are needed, too: 

(i) A system of vertical hard sticks moving in both directions in the 
plane. 

(ii) The same system as in (i), but enclosed in a vertical slab with 
stochastic boundary conditions. In this case the main interest is the 
convergence of the state to the stationary one driven by the boundary 
conditions: at the kinetic level (i.e., in the Boltzmann-Grad limit) some 
results are known. (8~ 
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